
Molecular Dynamics
and Monte Carlo Simulations

Exercises

Assistants:
Mathias Dankl (mathias.dankl@epfl.ch, BCH 4110)

François Mouvet (francois.mouvet@epfl.ch, BCH 4111)
Justin Villard (justin.villard@epfl.ch, BCH 4111)

The prediction of molecular properties at finite temperature - no matter whether it be a
chemical reaction in solution or in an enzyme - requires more than the tools treated in
the course ‘Introduction to Electronic Structure Methods’. Finite temperature effects can
give rise to substantial differences between an (idealised) isolated system at a hypothetical
0 K and the physical system at T > 0 K. Molecules have kinetic energy, and the system’s
behaviour is not governed by its potential energy alone, but by its free energy, with the
effects of entropy taken into account. Consider the basic thermodynamical concept of the
free energy of a reaction, ∆G = ∆H − T∆S. Although a reaction may be predicted to
be endothermic based on quantum chemical calculations at 0 K, the entropic term of the
transformation may still favour the reaction to be exergonic. The reaction will thus be
spontaneous at finite temperature (cf. the solvation of certain salts in water, where the
solute cools down due to an positive reaction enthalpy, but the process is spontaneous
due to a considerable rise in entropy).
Both Molecular Dynamics (MD) and Monte Carlo (MC) simulations are techniques

that allow to obtain information about the statistical distribution of a system, and thus
on its thermodynamic properties at finite temperature, entropic effects included. The
link between the microscopic system and the macroscopic thermodynamic observables is
established in a branch of physics known as statistical mechanics. During the following
exercise sessions, you will apply the techniques that have been treated in the lecture
to both theoretical and practical problems; ranging from simple coding over statistical
mechanics to actually performing both MD and MC simulations. Although the scope of
this course is too small to give you a complete overview of the field, you should be able
to gain some insight into the basic methodology and concepts.
Theses exercises are based on various textbooks and the Molecular Simulations tutorial

provided by the University of Amsterdam 1.
1http://molsim.chem.uva.nl/course

1

mailto:mathias.dankl@epfl.ch
mailto:francois.mouvet@epfl.ch
mailto:justin.villard@epfl.ch

Grading and attendance

Please note that your attendance to the exercises is mandatory, during the entire 2 hours
of the sessions. All the exercises can be finished within these 2 hours, and the assistants
will be with you to answer any questions that you may have. Every set of excercises will
be accompanied by a written report.
During all except the first exercise session, each person will spend 5-10 minutes with

an assistant where they will be asked questions about the past week’s exercises and the
respective report, which must have been handed in as a hard copy at the beginning of
the session. The answers to these questions will be graded and, together with the written
report, contribute 1/2 to your overall grade. Please note that the last session will be an
exception, as the grading will be based on the written report only. All reports need to
be handed in two weeks after the respective session.
Since the scope of this course is limited, each exercise session is accompanied by one or

several more involved bonus questions treating theoretical problems of relevance. Solving
these bonus questions will give you additional points at every exercise session and can
thus substantially improve your final grade of the course. Although the first exercises
include some coding in C++, you will not be tested on your knowledge of C++, but on the
understanding of the general concepts instead.
Your final grade will be based on 5 out of a total of 6 grades.

Contents

This list gives an overview of the topics that will be covered during the next weeks.

� Statistics: Numerical estimation of π using Monte Carlo methods

� Statistics: Statistical Mechanics and the Boltzmann Distribution

� Monte Carlo: Detailed Balance in Monte Carlo

� Molecular Dynamics: Molecular Dynamics of a Water Box

� Molecular Dynamics: Force Fields

� Molecular Dynamics: Biological System

Questions

We are here to help - please do not hesitate to contact us outside the scheduled hours.
You may contact us by mail or schedule an appointment to discuss with us in person.
If you notice any typos or mistakes in the exercise script, please notify the assistants.

2

1 Basic Concepts of Molecular Dynamics and Monte Carlo
Simulations

In this first set of exercises, you will encounter some basic concepts that are important
in molecular dynamics and Monte Carlo simulations. Later in the course, you will be
introduced to the underlying formal derivations and relations. This set of exercises con-
siders some general concepts of practical significance, including the link between quantum
mechanics and classical mechanics, and a statistical approach to solving certain mathe-
matical problems.

1.1 From Quantum to Classical Mechanics: The Example of Forces

Later in the course, you will learn that in Molecular Dynamics, thermodynamic prop-
erties of a system are determined by propagating it in time. This propagation is done
by evaluating the forces acting on the nuclei, which are usually considered to be clas-
sical particles. The nuclei are then moved according to the forces which act on them.
This clamped nuclei approximation is also at the base of the geometry optimisation proce-
dures in electronic structure theory, as discussed in the course ‘Introduction to Electronic
Structure Methods’. Analogously, in clamped-nuclei first-principles molecular dynamics,
the information on the forces is obtained from the electronic structure of the system by
solving the time-independent Schrödinger equation.
In classical mechanics, the forces acting on a system can be evaluated from:

F (q) = −∇E(q). (1)

The link with the time-independent Schrödinger equation is based on the Hellmann-
Feynman theorem:

dE

dλ
=

〈
Ψλ

∣∣∣∣∣dĤ(λ)

dλ

∣∣∣∣∣Ψλ

〉
, (2)

where λ is some parameter on which the Hamiltonian, and thus the wavefunction, para-
metrically depends. By considering the Hamiltonian of a system with N electrons and
M nuclei within the Born-Oppenheimer approximation, the forces are easily evaluated
from the Hellmann-Feynman theorem. The Hamiltonian reads:

Ĥ = T̂ + V̂ee +

M∑
I=1

N∑
i=1

ZI
|ri −RI |

+

M∑
I=1

M∑
J 6=I

ZIZJ
|RI −RJ |

, (3)

where T̂ is the kinetic energy operator, V̂ee is the operator that mediates electron-electron
interactions, and capitals denote nuclear and lower case letters denote electronic indeces
respectively. In cartesian coordinates, the forces acting on the x-componentXI of nucleus
I are:

FXI
= −

〈
Ψ

∣∣∣∣∣ dĤ

dXI

∣∣∣∣∣Ψ
〉
. (4)

3

Insertion into eq. 2 yields:

FXI
= −ZI

∫
x−XI

|r−RI |3
ρ(r)dr−

M∑
J 6=I

ZIZJ
XJ −XI

|RJ −RI |3
. (5)

The forces on the nuclei are thus easily derived from the electron density ρ(r) using an
analytical expression. In classical molecular dynamics, the forces are not evaluated from
the electron density, but are fully parametrised instead.

1.2 Statistical Approaches to Numerical Estimation

Monte Carlo (MC) methods are a broad class of computational algorithms which rely on
repeated random sampling to obtain the distribution of an unknown, often probabilistic
entity. They are particularly useful for problems in which it is difficult (or impossible) to
obtain a closed-form expression, or to apply a deterministic algorithm. A more detailed
discussion of MCmethods will follow in the lecture course, but here we intend to introduce
the topic with a practical example.
One of the simplest yet intuitive examples of an MCmethod is to estimate the value of π

through numerical integration. This exercise will focus on the importance of sampling and
maintaining a uniform distribution in the choice of sampling points. Since MC methods
rely heavily on uniform randomly distributed numbers, there is a detailed discussion of
pseudo-random number generators (PRNGs) in section 1.4.

1.2.1 Numerical Estimation of π

Consider a circle of diameter d, sitting at the centre of a square of length l as depicted
below in Figure 1. If points (x,y) are randomly distributed within the square and those
which fall within the circle versus the square are counted, numerical integration is effec-
tively being performed via the MC method. The area ratio of the circle to the square thus
provides a route to estimate π explicitly. It is worthwhile to note that in order to obtain
an accurate approximation of π, the randomly generated coordinates must be uniformly

l l l

dd d

l/d = 1 l/d > 1 l/d >>> 1

Figure 1: Schematic representation of modifying the l/d ratio. This ratio in part deter-
mines the accuracy of the π estimation.

4

distributed across the entire square to prevent bias. In addition, a large enough number
of sample points must be used to appropriately approximate the areas (and their ratio).

1.2.2 Designing the C++ Program

This section will serve two purposes: to (re-)familiarise you with the C++ programming
language, and also to guide you through the implementation of a π-estimation program
using the MC method. In a directory of your choosing, create a main.cpp file and open
it in a text-editor. An entry-point for where your program should execute must now be
created. In your main.cpp file add the following:

1 #inc lude <iostream>
2 #inc lude <time . h>
3 #inc lude <c s td l i b >
4
5 double random(double lower , double upper) ;
6
7 unsigned i n t g loba lSeed ;
8 unsigned i n t s u c c e s s f u lH i t s = 0 ;
9 unsigned i n t numberOfTrials ;

10 double c i r c l eRad i u s ;
11 double squareLength ;
12 unsigned i n t answerPrec i s i on = 15 ;
13
14 us ing namespace std ;
15
16 i n t main (i n t argc , char ∗∗ argv) {
17 return 0 ;
18 }

This code will form the base of your MC method. The variables numberOfTrials,
circleRadius and squareLength are necessary for the π estimation. The variable
globalSeed is a requirement for our pseudo-random number generator while the variable
answerPrecision is simply to ensure you print out an appropriate number of decimals
for the estimation. You can find a detailed description of libraries (iostream, time, cst-
dlib), forward declaration, main functions, command-line arguments, namespaces, global
variables and variable scope in section 1.5.1. Below the main function, insert the follow-
ing code.

1 double random(double lower , double upper) {
2 double zero_to_one = (double) rand () / RAND_MAX;
3 return (lower + (upper ∗ zero_to_one)) ;
4 }

This function returns a uniformly distributed random number. It makes use of the PRNG
rand(). The seed for this PRNG must also be initialised so insert the following code
within your main function:

5

1 srand (time (NULL)) ;

For further information about seeds, using PRNGs and the functions srand() and
time(), see section 1.5.2. Your goal is to estimate the value of π using the circle and
square method, thus the dimensions of the circle and square must be parsed into your
program, as well as the number of trials you wish to perform this estimation with. This
is achieved using the functions atoi() and atof(). Place the following early within your
main function:

1 numberOfTrials = a t o i (argv [1]) ;
2 c i r c l eRad i u s = ato f (argv [2]) ;
3 squareLength = ato f (argv [3]) ;

For more information about the functions atoi and atof, see section 1.5.3. You may
also wish at this point to print out these variables, to ensure that the the correct val-
ues are being passed into the program. This can be achieved using the following example:

1 cout << "Number o f T r i a l s " << numberOfTrials << endl ;

The cout object is used to print a character stream to the terminal, while the endl func-
tion flushes the stream. For further information about using standard output within
C++, see section 1.5.4. You can now begin with the MC method. Enter the following
into your main.cpp file in an appropriate place (i.e, once all variables are parsed, and the
seed is set):

1 f o r (i n t i = 0 ; i < numberOfTrials ; i++) {
2 // 1) Generate a new point (x , y) with in the square .
3 // 2) Test whether t h i s new point r e s i d e s with in the c i r c l e .
4 // 2 . 1) I f above i s true , i n c r e a s e the h i t counter .
5 }
6
7 cout << " Suc c e s s f u l h i t s : " << su c c e s s f u lH i t s << endl ;
8 double p iEst imat ion = 0 ;
9 // p iEst imat ion = ??

10 cout . p r e c i s i o n (answerPrec i s i on) ;
11 cout << "Pi es t imate : " << f i x ed << piEst imat ion << endl ;
12 re turn 0 ;

You may notice that the code is commented. This is intentional, as you must now modify
this section of the code to produce a functioning π estimation program. Follow the steps
in the comments and ask for help if you are stuck.

1.2.3 Compiling Your C++ Program

To compile the program, navigate your terminal focus to the directory which contains
main.cpp, and type the following:

g++ -std=c++11 main.cpp -o pi.x

6

This will produce an executable file called pi.x in your current directory. You can
execute this program using the following command-line arguments:

./pi.x NumberOfTrials SizeOfCircle SizeOfSquare

1.3 Exercises

1.3.1 Numerical Estimation of π

a) How do you calculate π using the ratio of points that fall within the circle and
square? Complete the Monte Carlo program to calculate π using this integration
technique. Include the entire code within your report and comment upon the lines
of code that you wrote.

b) Perform the π estimation for 1000, 1,000,000 and 100,000,000 trials. Take a screen-
shot of these estimations and include them in your report. What happens to the
accuracy of the π estimation when going from 1000 to 100,000,000 trials and why?

c) What happens if you use the same seed for the PRNG?

d) What happens to the estimation of π when the circle origin is changed? Why?

e) What happens to the accuracy of the estimation when you increase the square size,
or decrease the circle size? Is there an optimal ratio?

1.3.2 From Quantum to Classical Mechanics

a) Prove the Hellmann-Feynman theorem, equation (2).

b) Bonus: Explain the Born-Oppenheimer approximation in your own words. You
do not have to use any equations (but you may if you wish).

7

1.4 Random Sampling: Random and Pseudo-random Numbers

Monte Carlo methods require a source of randomness. It is desirable that these random
numbers are delivered as a stream of independent U [0, 1] random variables. It is a ne-
cessity to generate random numbers uniformly, such that bias is not introduced into any
physical property we wish to predict or estimate. There are two options for generating
random numbers: using a physical or pseudo-random number generator. It would be
satisfying to generate random numbers from a process that, according to a well estab-
lished understanding of physics, is truly random. From this, our mathematical model
would then match our computational method. Devices have been built that generate
random numbers from physical processes such as radioactive particle emission, that are
thought to be truly random. Unfortunately, physical random number generators are
awkward to use in practice: simulations cannot be rerun so generated numbers have
to be non-compressively stored, and random numbers cannot be supplied particularly
fast. In contrast, a pseudo-random number generator (PRNG) uses simple recursions
and modular arithmetic and thus are much faster. The pseudo term refers to the fact
that it is possible to observe the sequence produced by the PRNG, infer the inner state
and then predict future values. Pseudo-random number sequences are not truly random,
however they can still pass the necessary tests for randomness. For some applications
such as cryptography it is necessary to have pseudo-random number generators for which
prediction is computationally infeasible, but Monte Carlo sampling does not require this
caveat.
Designing pseudo-random number generators is outside the scope of this course, how-

ever, some basic examples are discussed below for your interest. A well-known example
of a PRNG is the multiple recursive congruential generator (MRG):

xi ≡ a1xi−1 + a2xi−2 + . . .+ akxi−k (mod M), (6)

where k ≥ 1 and ak 6= 0. Another PRNG worthy of note is the lagged Fibonacci generator
(LFG) which takes the form:

xi ≡ xi−r + xi−s (mod M), (7)

with carefully chosen r, s and M . The LFG is a special case because it is rather fast.
Interestingly, the optimal ratios of i− r and i− s have been found to closely match the
golden ratio.
There are a number of very good and thoroughly tested generators. Among these

high-quality generators, the Mersenne twister algorithm (MT19937) of Matsumoto and
Mishimura (1998) has become the most prominent. Sometimes, however, very bad num-
ber generators are embedded in general or specific purpose software. L’Ecuyer and Simard
(2007) published very extensive results that found many operating systems, programming
languages and computing environments to have random number generators that failed
many tests of randomness. To conclude, it is best to check documentation to be sure
that your environment or programming language of choice implements a suitable PRNG
by default.

8

1.5 C++ Glossary

1.5.1 Libraries, Forward Declaration, Main Function, Command-line Arguments,
Namespaces, Global Variables and Variable Scope

Libraries Libraries are pre-compiled code that contain useful functions for a program
to use. The iostream, time and C standard general utility (cstdlib) libraries are included
through the #include pre-process directive. The #include pre-process directive tells the
compiler that you wish to include the contents of <library> into your source file before
it is converted to machine code, thus enabling you to use the aforementioned functions
in your program.

Forward Declaration The double random(double lower, double upper) declaration
is what is known as a forward-declaration of a function and serves to inform the compiler
that this function is defined somewhere within your code.

Namespaces The namespace std is the namespace in which the C++ standard library
functions are declared (standard input, standard output, random, string, regex... etc).
Namespaces are simply structures to prevent function name conflicts.

Main Function The main function is a special function which defines the point at which
your program begins execution.

Command-line Arguments The parameters argc and argv are special variables which
are passed to the program from the command-line as arguments. The variable argc is an
integer, while the variable argv is a pointer, which is an address to some useful data within
your computers memory. In this case argc is simply a count of the number of arguments
passed to the program, while argv points to an 2-dimensional array of characters, i.e the
passed arguments themselves. It is worth noting that arrays in C/C++ are represented
in their true form: a pointer to the beginning of the memory block at which the array
starts. Thus, individual characters passed to the program as command-line arguments
can be accessed by argv[i][j], where i is the index of the string being passed, and j is
the index of an individual character within the aforementioned string.

Global Variables and Variable Scope Variables can optionally be defined with access
modifiers through the keywords public, protected and private. These access modifiers
change the scope of a variable, i.e from where this variable can be acccessed within the
program. If no access specifier is present, as is the case for the variables numberOfTrials,
circleRadius and squareLength, then the access specifier private is inferred. The
public specifier infers that the associated variable is accessible throughout the entire
program. The private specifier limits the scope of the variable to that of the class in
which it is defined, while the protected modifier performs the same role except that it is
also accessible from derived classes. In this example you have only defined one class/file

9

and hence it is perfectly fine for you to not label the variables with an access modifier.
In contrast, variables defined within functions are only accessible within that function.

1.5.2 Generating Random Numbers and PRNG Seeds

Generating Random Numbers The <random> library provides many ways to generate
pseudo-random numbers but are overly complicated for your purpose. Instead, you use
the function rand() defined within the cstdlib library. The function rand() is a pseudo-
random number generator (PRNG) and returns a uniformly distributed value between
0 and RAND_MAX. In this implementation, the function rand() is wrapped with another
function random(double lower, double upper). Within this new function rand() is
first modified slightly to create a uniformly distributed random number within the range
[0, 1], and then this is applied to the lower and upper parameters to create the desired
domain distribution within the bounds [lower, upper].

PRNG Seeds The seed is an integer which rand() uses to generate a sequence of
pseudo-random numbers. Using the same seed will generate the same pseudo-random
number sequence. Since you are building a stochastic model, it is most useful that the
seed is unique every time your program is run. The function srand(int) sets the seed for
the rand() PRNG and is defined in the <cstdlib> library. Here you pass to srand(int)
another function time(time_t *) which is defined in the ctime library <ctime>. The
argument of time(time_t *) allows you to calculate the time passed between now and
the time passed in to the function, through the time_t type. However, you envoke the
special case of time(timer_t *), such that if the argument timer_t * is NULL, then this
function returns the number of seconds since the Epoch (defined as 00:00 hours, Jan 1,
1970 UTC). This number is a suitable seed for your purposes, since your program should
execute in a time period longer than one second, hence your sequence of pseudo-random
numbers should be unique upon each calculation.

1.5.3 Library Functions

The function atoi(const char *) retrieves an integer from an input string, while the
function atof(const char *) performs the same but for a floating point. These func-
tions are defined in the <cstdlib> library you import at the beginning of your code.

1.5.4 Standard Output

The cout variable is an object of class ostream. This represents the standard output
stream for narrow characters (and corresponds to the C stream stdout). The standard
output stream is the default destination of characters determined by the enviroment,
in this case, the terminal. The operator « is an overloaded operator to provide the
functionality of pushing characters and strings to the stream buffer. Finally, the endl
function simply inserts a new line character and flushes the stream. In other words, the
line cout « "Hello" « endl; prints the message "Hello" to your terminal.

10

	Basic Concepts of Molecular Dynamics and Monte Carlo Simulations
	From Quantum to Classical Mechanics: The Example of Forces
	Statistical Approaches to Numerical Estimation
	Numerical Estimation of
	Designing the C++ Program
	Compiling Your C++ Program

	Exercises
	Numerical Estimation of
	From Quantum to Classical Mechanics

	Random Sampling: Random and Pseudo-random Numbers
	C++ Glossary
	Libraries, Forward Declaration, Main Function, Command-line Arguments, Namespaces, Global Variables and Variable Scope
	Generating Random Numbers and PRNG Seeds
	Library Functions
	Standard Output

