
4 Introduction to Molecular Dynamics

In this set of exercises, you will be introduced to the basic concepts of Molecular Dynamics
which you will apply to a simple test system, a water box. You will then quantify the
averaged structural properties of the system using its pair radial distribution function.

4.1 The Ergodic Hypothesis in Statistical Mechanics

The question whether some properties obtained by averaging over a thermodynamical
ensemble (the ensemble average) are equal to a time average of said properties - i.e.
whether a system is ergodic or not - poses one of the fundamental problems of statistical
mechanics. Unfortunately, there exists no complete proof of an ergodic theorem applied
to thermodynamic ensembles. However, it can be shown that, if the only constants of
motion of the system are constant functions over phase space (i.e. constants independent
of coordinates and momenta), then the ensemble and time averages are identical for
t → ∞. Since a more general ergodic theorem has not been proven yet, a system is
usually considered ergodic as long as all regions of phase space are accessible during the
time t for which the system is sampled. In practice, the ergodic hypothesis,

〈O〉 =

∫
Γ

1

Z
O(Γ)e−βH(Γ)dΓ = lim

t→∞

1

t

∫ τ

0
O(τ)dτ, (1)

is thus assumed - but not guaranteed - to hold.

4.2 Sampling Phase Space using Molecular Dynamics

Under the ergodic hypothesis, a direct sampling of phase space configurations can be
replaced by a sampling of the dynamic evolution of the system for long enough times t.
For an NV T ensemble, an observable of a state s will then be explored with a probability
corresponding to its Boltzmann weight, and for a sufficiently long t - i.e. for a sufficiently
high occurence of all events to be representative - the time-average over the O(s) will
reproduce the ensemble average. The longer the simulation time t is chosen, the better
the convergence of the time average towards the ensemble average (it is evident that too
short t do not lead to a converged dynamics, i.e. phase space is not properly sampled).
In this spirit, a (suitable) starting conformer of a system can be propagated in time

according to Hamilton’s equations of motions:
dpi
dt

= −∂H
∂qi

, (2)

dqi
dt

=
∂H

∂pi
. (3)

This time-evolution is completely general. If the system is represented by a set of classical
point particles, the Newtonian formulation of classical mechanics can be applied to the
problem, and the particles can be propagated by evaluating the force acting on them:

FI = ∇IE (4)
= mIaI (5)

1

For small time steps ∆t = τ , the particles are accelerated according to a which is deter-
mined from ∇IE

mI
at t = 0. At time t = τ , the forces and the acceleration are re-evaluated,

and the system is moved according to the updated forces that act on it. These forces
may be obtained from quantum mechanical calculations (first principles dynamics, cf.
the discussion of the Hellmann-Feynman theorem) or from a parametrised form for E(r)
(classical dynamics, which will be discussed in detail in the following lecture). Since the
evolution of the system is well-defined at every point based on the forces acting on it,
its dynamics will be deterministic. Given an initial set of positions and momenta, every
point ever visited by the system at time t is pre-determined. Applying this approach to
molecular systems results in either classical or first-principles molecular dynamics (MD).

4.3 Structural Properties from MD

4.3.1 Periodic Boundary Conditions

Simulating for long times t ensures that the ensemble average can be approached, how-
ever, it is impossible to sample in the limit of the ergodic theorem t→∞. Additionally,
for bulk-property calculation it is necessary to use a sufficiently large number of molecules
to ensure that regions of phase space are sampled representatively, such that one may be
confident that the ensemble average is properly reconstructed from the time average. In
practice there is a relatively small and finite number of molecules for which simulation
is computationally feasible, hence, compared to a macroscopic system (∼NA molecules),
the ratio of molecules near the surface of the simulation box is often too large to be
representative. Computational modelling of molecular systems could therefore have an
artificially imposed doping of surface effects which negatively impacts the calcuation of
any bulk property of interest. To remedy this, surface effects can be disposed of for all
system sizes if periodic boundary conditions (PBC) are imposed. In this regime, the
simulation box is replicated through space to form an infinite lattice. When a molecule
moves during simulation its periodic images move with the exact same displacement,
thus, if a molecule leaves the central box, one of its images will enter through the oppo-
site face. This is illustrated in Figure 1: there are no walls at the boundary of the central
box and the system has no surface.
It is not necessary to store the coordinates of all images in a simulation (this would

require infinte space). When a molecule leaves the box by crossing a boundary, attention
may be switched to the identical molecule entering from the opposite side.

4.3.2 Pair Radial Distribution Functions g(r)

Radial distribution (Pair correlation) functions are of fundamental importance in thermo-
dynamics, since macroscopic thermodynamic properties can usually be calculated directly
from g(r). In short, they simply describe how probability density varies as a function of
distance from a reference particle.
The partition function Z can be evaluated, in principle, by carrying out the integrations

for a substance with a known potential function. However, this task is very difficult due
to the very large number of molecules involved in real systems. A more convenient

2

Figure 1: Simulation box and its periodic images. When a molecule leaves the central
box, it is wrapped around to the opposite side.

formulation is based on the concept of distribution functions. The probability P (N) of
finding molecule 1 in volume element dr1 at r1, molecule 2 in volume element dr2 at r2,
. . ., and molecule N in volume element drN at rN is given by:

P (N)dr1 . . . drN =
1

Zc(N,V, T)
e
− UN

kBT dr1 . . . drN , (6)

where UN (r1, . . . , rN) is the potential energy due to the interaction between particles
and Zc(N,V, T) is the configurational integral,

Zc(N,V, T) =

∫
. . .

∫
e
− UN

kBT dr1 . . . drN , (7)

taken over all possible combinations of atomic particle positions. Generally the total
number of particles is massive enough such that P (N) is not particularly useful. It is
more informative to consider the relative position of two molecules irrespective of the
location of other molecules in the system. Integrating equation 6 over all coordinates
except those pertaining to the two molecules of interest, one obtains the definition of
the second-order disitribution function p(2)(r1, r2), which gives the probability of finding
molecule 1 in volume element dr1 at r1 and molecule 2 in volume element dr2 at r2:

p
(2)
ij (r1, r2) = Ni(Nj − δij)

1

Zc(N,V, T)

∫
. . .

∫
e
− UN

kBT dr3 . . . drN , (8)

where δij is the Kronecker delta. Note that p(2)(r1, r2) depends on temperature, density
and composition additionally to r1 and r2. For molecules which interact with radially
symmetric potential functions p(2)(r1, r2), in the fluid state, depends only on the distance
between centres of masses r12 = |r1 − r2|. In the limit of ideal gas (U

kBT
→ 0), the

distribution function p(2)(r1, r2) approaches the value Ni(Nj − δij)/V 2. This suggests

3

defining the pair radial distribution function, g(2)
ij (r) by:

g
(2)
ij (r) =

p
(2)
ij (r)V 2

(NiNJ)
, (9)

which approaches 1− δij/Nj in the above limit. Combining equations 8 and 9 gives:

g
(2)
ij (r) = V 2

(
1− δij

Nj

)
1

Zc(N,V, T)

∫
. . .

∫
e

−UN
kBT dr3 . . . drN , (10)

which is the second-order correlation function (pair radial distribution function). If
the system consists of spherically symmetric particles g(2)

ij depends only on the relative
distance between them rij = rj − ri. Taking particle 0 as fixed at the origin of the
coordinate system, ρg(r)dr = dn(r) is the number of particles (among the remaining
N − 1) to be found in the volume dr around the position r. These particles can then be
formally counted as:

dn(r) =

〈∑
i 6=0

δ(r − ri)

〉
dr (11)

where 〈. . . 〉 denotes the ensemble average, yielding:

g(r) =
1

ρ

〈∑
i 6=0

δ(r − ri)

〉
= V

N − 1

N
〈δ(r − r1)〉 (12)

where the second equality requires the equivalence of particles 1, . . . , N − 1.

4.4 Tinker

Tinker is a complete package for performing empirical force field molecular dynamics cal-
culations, and will be used throughout the remaining lab sessions. The following section
provides a brief introduction while those thereafter provide instructions and exercises.

4.4.1 Introduction

Tinker is maintained by Professor Jay William Ponder at the Washington University
School of Medicine. Tinker is written in Fortran95 and works on Windows, Mac, and
Linux. Its source code is available free of charge under a restrictive license. It is intended
to serve as a platform for algorithm development and parameterisation, while still being
sufficient for most production work. Rather than incorporating all the functionality in one
monolithic program, Tinker provides a set of relatively small programs that interoperate
to perform complex computations. New programs can be easily added by developers with
only limited programming experience. The central component of the Tinker package is
a modular set of routines which allow the manipulation of coordinates and evaluation of
potential energy and derivatives in a straightforward fashion.

4

The series of major programs included in the distribution perform the following core
tasks: (1) energy minimisation over Cartesian coordinates, torsional angles or rigid bod-
ies, (2) molecular, stochastic and rigid body dynamics with periodic boundaries and
temperature/pressure control, (3) multiple time step RESPA integration for efficient MD
simulation, (4) building protein and nucleic acid structures from sequence, (5) analysis
and breakdown of single point potential energies, (6) potential energy surface search, (7)
free energy calculations, (8) analysis of and comparison to electrostatic potentials, (9)
fitting of intra-and intermolecular potential parameters to structural and thermodynamic
data, and (10) global optimization via simulated annealing, Monte Carlo minimisation,
and energy surface smoothing methods.

4.4.2 Using Tinker

Tinker has been pre-installed on the computer room machines. If you wish to use your
own laptop or desktop instead, please refer to section 4.8 for information about compiling
Tinker from source.
To run Tinker calculations you need two files: the Tinker .xyz file and the Tinker

.key file. The first file contains coordinate information of the system of interest while
the second file contains the instructions and properties necessary for the calculation be-
ing performed such as: cutoff distance, potential/force-field parameters and thermostat
information etc. It is worthwhile to note that the .xyz file contains the progressive num-
ber of atoms in the system, atomic name, X-, Y-, Z- coordinates, type and connectivity
between atoms.
In this exercise, you are asked to run a molecular dynamics simulation of a box of water

molecules [24.622, 24.622, 24.622 (Å3)]. The files necessary for this exercise are provided
on the exercise webpage. Those are waterbox.xyz, waterbox.key and waterbox.dyn,
which are the inputs to the molecular dynamics simulation. The waterbox.dyn file is
simply a restart file from a previous molecular dynamics run. Create a new folder named
Exercise_4/ within the Desktop/ directory and copy those necessary files.
To run the simulation use the following command:

/opt/tinker/dynamic waterbox.xyz -k waterbox.key 10000 1.0 0.1 2 298.0
> md.log &

This command specifies that you wish to perform molecular dynamics upon the waterbox.xyz
system using parameters defined within the waterbox.key file. The additional parame-
ters passed by command-line are:

a) Number of steps: 10000.

b) Time step length: 1.0 femtoseconds.

c) Record the output coordinates at every 0.1 picosecond.

d) Sample the canonical ensemble (Option 2).

5

e) Temperature held constant at 298.0K.

And finally the output of the simulation is piped to the file md.log which you can
track the progress of by typing the following command:

tail -10 md.log

where the -10 flag will make tail print the last 10 lines of the md.log file to your
terminal.

4.5 Creating the Trajectory

The above dynamics will produce 100 snapshots of the system, saved in the files named
‘waterbox.001...waterbox.100’. These files contain the coordinates of the trajectory at
every 0.1 picosecond. To visualise this trajectory, you must first compile them together
into a single archive using the following program:

/opt/tinker/archive

You will be asked to enter ‘1’ to indicate that you are compressing a set of frames and
then the name of the coordinate archive file. Enter ‘waterbox’. You will now need to
enter the frames over which the dynamics was recorded, so enter ‘001 100’. This will
produce a waterbox.arc file which can be loaded into VMD.

4.6 VMD: Pair Radial Distribution Function

To calculate the pair radial distribution function g(r) from the waterbox you have just
simulated, first open the waterbox.arc file with VMD using the following command:

vmd waterbox.arc

If the waterbox.arc file produced above cannot be loaded into VMD immediately, you
will need a small amount of editting. Open the file in vi as follows:

vi waterbox.arc

then type the following command:

:%s/ 24.662000.*\n//ge

and press enter. Note that there are 4 spaces between the first / and the numeral 2.
This command will remove the second line (containing simulation box information) from
every frame in the archive.

6

Once the waterbox.arc file can be automatically recognised as a Tinker file, you can
calculate the pair radial distribution function:

a) Click on Extensions → Analysis → Radial Distribution Function g(r). This will
open a new window.

b) Select your system in "Use Molecule". Click on Utilities→ set unit cell dimensions
and modify Length [a, b, c] to [24.662, 24.662, 24.662 (Å3)]. The Angles [α, β, γ]
should be left at [90, 90, 90] respectively. Finally click ‘Set unit cell’.

c) Enter ‘name O’ into the Selection 1 field, and ‘name O’ into the Selection 2 field.
This will calculate g(r) between oxygen atoms solely.

d) Select the following boxes to true: use PBC, Display g(r), Display
∫
g(r)dr and

Save to file.

e) Click compute g(r).

You will be presented with two graphs, g(r) and
∫
g(r)dr. You will also be asked to

save the data to file; enter an appropriate name and save this file if you wish to replot
using gnuplot. Additionally you can save both of these graphs to an image by selecting
File → Export to PostScript.

4.7 Exercises

4.7.1 Sampling Phase Space using Molecular Dynamics

a) How does an MD program work? Describe schematically how you would perform
a molecular dynamics simulation. Point out the main differences between your
scheme and Monte Carlo methods. Bonus: Give your answer in pseudocode.

b) Describe a possible implementation of periodic boundary conditions. Bonus: Give
your answer in pseudocode.

c) Why are most MD and MC simulations based on periodic systems? Explain the
main purpose of periodic boundary conditions in these schemes.

4.7.2 Structural Properties from Molecular Dynamics

a) Provide the g(r) plot in your report, indicating the locations of the solvation shells,
noting that r has the units of Ångstroms (Å).

b) Provide the
∫
g(r)dr plot in your report, what can you specifically infer from this

graph?

c) Figure 2 presents various g(r) pairs determined experimentally for bulk water at
298.0K. Comment upon and list reasons for any major differences between this and
the gOO(r) you have calculated.

7

Figure 2: Experimental g(r) of water at 298.0K.

d) Recompute g(r) with the PBC condition turned off and provide the plot in your
report. Explain the changes in the g(r) graph.

e) Perform the MD for 5000 and 20,000 steps using the previous conditions. Calcu-
late and provide in your report the corresponding g(r) and

∫
g(r)dr graphs, and

comment upon the effect of increased sampling time upon g(r) calculation.

8

4.8 Tinker: Installation

If you wish to install Tinker onto your laptop or machine, you will find the following
information useful.

4.8.1 Requirements

This section assumes you are using MacOSX. If you are using a Linux or Windows
machine, the following information is still relevant, but in addition you will find section
4.9.1 useful.

4.8.2 Download

To download Tinker 6.3.3, navigate to http://dasher.wustl.edu/tinker/ and scroll down
to the Tinker Downloads section. Here you will find a file labelled Previous Release
(Tinker 6.3.3, GNU gzip). Download and move this file to your desktop.

Open a terminal instance, navigate your terminal focus to Desktop/ and decompress
the archive file using the following command:

tar -zxf tinker-6.3.3.tar.gz

This will produce a folder called tinker/ which contains the entire source code of
Tinker 6.3.3: including multiple examples, test scripts, parameters for force fields...etc.
Now type the following commands to navigate to the tinker/ folder, create a directory
called bin/ and finally move to the source/ directory:

cd tinker/
mkdir bin
cd source

4.9 Compilation

The following commands will be needed to compile Tinker 6.3.3. You must ensure that
you are launching these scripts from the source/ directory.

../mac-osx/gfortran/compile.make

../mac-osx/gfortran/library.make

../mac-osx/gfortran/link.make

The compile.make script must be run first and will take approximately 10 minutes to
finish. Once this has completed, run the library.make script to produce the necessary
library files, and finally link.make to link all object files to create each Tinker executeable
(*.x). It is customary to separate source from executeable files, thus you should move
the .x files to the bin/ folder you created earlier as follows:

mv *.x ../bin

You have now succesfully installed Tinker.

9

http://dasher.wustl.edu/tinker/

4.9.1 Compilation: Windows and Linux

Tinker supports a multitude of Fortran compilers and has provided individual make
scripts for the common distributions, however, it is recommended that you use gfortran
for consistancy with this script. If you do not have gfortran already installed, you will find
the instructions on the GCCWiki website most useful (https://gcc.gnu.org/wiki/GFortran).
You will find operating system-specific compile, library and link scripts in the tinker/

folder. This process is identical to that mentioned in section 4.9.

10

https://gcc.gnu.org/wiki/GFortran

	Introduction to Molecular Dynamics
	The Ergodic Hypothesis in Statistical Mechanics
	Sampling Phase Space using Molecular Dynamics
	Structural Properties from MD
	Periodic Boundary Conditions
	Pair Radial Distribution Functions g(r)

	Tinker
	Introduction
	Using Tinker

	Creating the Trajectory
	VMD: Pair Radial Distribution Function
	Exercises
	Sampling Phase Space using Molecular Dynamics
	Structural Properties from Molecular Dynamics

	Tinker: Installation
	Requirements
	Download

	Compilation
	Compilation: Windows and Linux

